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Normal  Forms of  Reversible Dynamical  Systems 

Giuseppe Gaeta 1 
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We consider reversible dynamical systems with a fixed point which is also fixed 
under the reversing involution; we show that applying to such a system the 
canonical Poincar6-Dulac procedure reducing a dynamical system to its normal 
form, we obtain a normal form which is still reversible (under the same 
involution as the original system); conversely, we also show how to obtain all 
the reversible systems which are reduced to a given reversible form. This allows 
one to (locally) classify reversible dynamical systems, and reduce their (local) 
study to that of reversible normal forms. 

1. I N T R O D U C T I O N  A N D  S T A T E M E N T  O F  T H E  P R O B L E M  

In  this note  we will deal  with reversible dynamical systems (Devaney ,  
1976). Here ,  by  a s m o o t h  dynamica l  system (DS)  we mean  a system o f  
O D E s  

2 = f ( x )  (1) 

x e M = R m ;  f :  M ~ T M  

where  f is a smoo th  vec tor  field (VF)  on M. Since M = R m, it can  also be 
seen as  a s m o o t h  funct ion  f :  R m ~ R m, and  in the fol lowing we will cons ider  
i t  in this way. W e  will consider  the case f ( 0 )  = 0; it  is then na tu ra l  to  s tudy 
local ly (1) a r o u n d  the fixed po in t  x = 0. 

The  DS (1) will be cal led reversible if  there exists an  involu t ion  
S:  M ~ M such tha t  

s 2 = I (2) 

f ( S x )  = - S f ( x )  (3) 
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The name "reversible" is due to the fact that such a system is invariant 
under the transformation 

x ~ S x  
t ~ --t  (4) 

Reversible systems have been studied for a long time (Devaney, 1976; 
Sachs, 1987; Moser, 1966, 1967; Sevryuk, 1986; Arnold and Sevryuk, 1986) 
due to their properties and physical interest; in recent times, they have 
attracted renewed attention (Quispel et  al., 1988, 1989; Quispel and 
Roberts, 1988, 1989; Quispel and Capel, 1989, 1992; Post et al., 1990; 
Roberts and Quispel, 1992). We will refer to Devaney (1976), Quispel and 
Capel (1989), and Roberts and Quispel (1992) and references therein for 
motivation, properties, and known results concerning reversible systems, 
and concentrate on the specific problem we want to discuss, namely the 
connection between reversible dynamical systems and normal forms. 

In the study of DS, a valuable tool is given by the theory of (Poincarr) 
normal forms (NF) (Arnold, 1982; Arnold and II'yashenko, 1988; Bruno, 
1989; Verhulst, 1990); this allows one to classify DS up to differential 
equivalence, and to extract a set of DS-- those  in NF--which  can be 
studied in order to obtain information about the most general DS. It 
should be stressed that other NF theories apply if we are interested in other 
forms of equivalence, e.g., c~k or topological ((g0) equivalence rather than 
the differential (~oo) one (Arnold, 1982; Arnold and Iryashenko, 1988; 
Bruno, 1989). Here, we will only be concerned with cgoo equivalence and 
Poincarr, or Poincarr-Dulac, NF; from now on, by NF we will mean 
Poincarr-Dulac NF. 

The study of reversible dynamical systems (RDS) encounters many 
difficulties, one of which is the very fact that, while it is easy to decide if a 
given DS is reversible with respect to a given involution S, it is not easy at 
all to know if, given a DS, there exists any S under which this is reversible. 
It is quite clear that a NF classification of RDS would be quite helpful in 
this respect (and many others as well). In particular, it would be helpful if 
we could affirm that a DS which is reversible with respect to (w.r.t.) a given 
So is reduced to a NF which is still reversible w.r.t, the same So. 

This is indeed the goal of the present node, and we will prove below 
that the property mentioned above does actually hold. 

The same concept can be expressed in a slightly more abstract way in 
terms of diagrams, which will offer the opportunity to introduce a notation 
to be used in the following. 

Let ~g be the set of smooth VF on M (i.e., of diffeomorphisms of M), 
which in the present case can be identified with the set of  smooth functions 
f:  M ~ M, and let ~s c J/ '  be the set of VF reversible w.r.t.. S, i.e., for 
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which (3) is satisfied, S being such that (2) holds. Let p, be the projection 
p,: ~ ~ ,  and let ~r be the operator which associates to a VF its 
canonical NF: let ~ be the set of VF in NF, i.e. ~' = ~(,g). We would then 
like to prove that the following diagram is commutative: 

Notice that a priori the sets ~(N~) and O~(~) are not equal. Indeed, p~(~) 
represents the set NF VF which are in ~ . ,  i.e., 

o, ( r  = (~  n ~ , )  = ~ ,  (6) 

It is clear that if w e ~ , ,  then w e ~ ,  and re(w) = w, so that 

�9 ~ ,  _~ ~(.~,) = ~ .  (7) 

but it could happen that a reversible VF is mapped by ~ into a nonre- 
versible NF (or a NF reversible w.r.t, a different S). We will have to prove 
this is not the case, i.e., ~ = ~ .  

As already suggested by the notation (2), (3), we will only consider 
here the case of linear involutions: i.e., S will be an ( m x  m) real matrix; 
notice that in this case, x = 0 is necessarily a fixed point for S. The case of 
nonlinear involutions would be considerably more complicated, as the 
coordinate transformation needed to take the DS to NF would also modify 
the coordinate representation of S; this is analogous to what happens when 
considering the NF reduction of symmetric (rather than reversible) DS in 
the case of nonlinear symmetries, which requires a quite different approach 
(Cicogna and Gaeta, 1993). We presume that the case of nonlinear 
involutions can be dealt with along the lines of the nonlinear symmetries 
approach, but we defer its study to a later time, due to the mentioned 
substantial difference between the two approaches. 

It should also be mentioned that, since as already mentioned in the 
case M = R m, f can be seen also as a function f:  R m ~ R  '~, our results 
immediately apply to discrete DS in R m, i.e., maps of the type x~ + 1 =f(x , ) ,  
such that f satisfies (3); anyway, in the case of discrete DS, the appropriate 
definition of reversibility would not be (3), but instead f ( S f ( x ) ) =  Sx 
(Quispel and Capel, 1989; Roberts and QuispeI, 1992). 

In the following sections, we will first briefly recall how the NF 
reduction works (Section 2) and some simple algebraic facts we need 
(Section 3); we pass then to prove our main result, announced above, in 
Section 4; in Section 5 we illustrate by a concrete example the simplification 
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introduced by our result in the study of RDS; we summarize and discuss 
our results in Section 6. 

After the completion of the present work, I became aware of the recent 
paper by Lamb et aL in which the authors obtain many relevant results 
concerning reversible dynamical systems. In particular, the result given in 
the present note is also contained in their paper (see their Propositions 3 
and 4), although it is obtained there by a different method. I think it is of 
some interest to see this result also by the (simpler) method presented here, 
which is elementary and completely explicit. 

2. REDUCTION TO POINCARI~-DULAC NORMAL FORM 

The Poincar~-Dulac procedure (Arnold, 1982) to transform a DS 
(equivalently, a VF) like (1) in its NF, given by 

= w(x); w = ~( f )  (8) 

is based on a sequel of formal near-identity transformations of the form 

x ~ Y, = x + hk(X), k > 2 (9) 

hk(ax) = akhk(x 

Under this, and with Vh the matrix function given by 

Oh; 
(Vh)~ = 7J) (10) 

O X  

the DS (1) is transformed into 

= [I + (Vh)] - l f (x  + hk(x)) =-f(x) (11) 

If now we assume f(0)  = 0, write f as a sum of homogeneous terms 

f ( x )  = ~ f ~ ( x )  - A x  + ~', f~(x) (12) 
n n = 2  

and expand (11) up to terms of order k, we get 

k - - I  

Yc = A x  + ~ f , ( x )  + [fk(X) + Ahk(x)  - (Vh)Ax] + h.o.t. (13) 
n f f i 2  

where h.o.t, represents terms homogeneous of order (k + 1) and higher. In 
other terms, under (9) the terms of order n < k are unchanged, and that of 
order k is changed according to 

A ~JTk = A  -- "$t'A (hk) (14) 
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where ~a :  - 4 / ~  ~r the homological operator associated to A, 

~ = a x .  v - A ( 1 5 )  

also equivalent to the Poisson bracket with the linear field Ax; i.e., Vfe ~r 
it satisfies 

(.~q~af)(x) = {Ax, f ( x ) }  =- (Ax . V)f(x) - ( f ( x )  . V)Ax (16) 

Let us introduce the projection 0 on the range of s 

0: ~ oRan(ZPA) (17) 

Then, the homological equation 

~e~hk = 0(A); k -> 2 (18) 

can be uniquely solved for hk up to a 6hk ~ Ker(A~ By choosing the hk 
which solves (18) as the hk generating (9), and proceeding sequentially for 
k = 2, 3 . . . . .  we can then eliminate f romfthe  terms in Ran(A~ up to any 
desired order. The NF will therefore be characterized by the fact that it 
includes only terms in [Ran(~a)] ~, i.e., in Ker (~  +). 

It is customary in NF theory to restrict to the ease A is a normal 
matrix, i.e., 

[4, A +1 = 0 (19) 

in which case also [A~ ~ - ]  =0,  and we have in particular 

~t  = Ker(A~ ~ Ran(A~ (20) 

In  the following we will assume (19) and (20) hold (Assumption A). The 
NF reduction in the case A has Jordan blocks is discussed, e.g., in 
(Arnold, 1982; Arnold and II'yashenko, 1988; Bruno, 1989); it would be 
easy to extend our results to this ease (see the final discussion). 

As mentioned above, the solution to (18) is unique provided we 
require hk ~ [Ker(-~,~)]c; if Assumption A is satisfied, this amounts to 
requiring hk ~ Ran(AeA). We speak then of canonical NF reduction. 

3. S O M E  ALGEBRAIC FACTS 

Let us consider a matrix S satisfying (2). To  this matrix we will 
associate two sets o f  VF, i.e., the set cg s c Jr' o f  VF commuting with S, and 
the set ~ of VF, which are reversible w.r.t. S (antieommuting with S): 

~ = { f  e .,#t / f(Sx) = Sf(x) } ~ Jg (21) 

~ = { f e  J l / f ( S x )  = - S f ( x ) }  ~ ./g (22) 
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Because of (2), these give a decomposition of.At, i.e., we have the following 
result: 

Lemma  I'.  If S 2 = I, then ~r = C~ ~ ~ .  

The above is equivalent to affirming the following. 

Lemma  I". If S 2 = I, for any f ~ ~t' there are ~b E ff~, 0 ~ ~ such that 
f ( x )  = r + 0(x). 

Proo f  This follows from standard general group-theoretic results 
(Kirillov, 1976; Hamermesh, 1962), it is also easy to give a direct proof. 
Using the decomposition of the lemma, we get 

f ( S x )  = gd(Sx) + O(Sx) = S r  - SO(x) = S f ( x )  - 2SO(x) (23) 

so that (recall S-1 = S) it suffices to define 

1 
O(x) = - ~ [Sf(Sx)  - f (x ) ]  (24) 

to have the desired decomposition. [] 

Let us now consider h E cr (or h e ~ ) ,  and the associated matrix 
(Vh)(x)  =-Vjht(x). We have the following result: 

L e m m a  11". If h e if,, then (Vh)(Sx)  = S[(Vh(x)]S - I .  

L e m m a  H".  If h e ~ , ,  then (Vh) (Sx)  = - S [ ( V h ) ( x ) ] S  -1. 

Proo f  This is again a well-known fact, but we give a short proof here. 
Consider the function 

#(x)  - h (Sx )  (25) 

Its gradient is 

(v# ) (x )  = (Vh)(Sx) �9 s 

but using h(Sx)  = +_Sh(x), we also have/ / '=  +_Sh, i.e., 

(v# ) (x )  = + s .  (vh) (x)  

and therefore the lemma. �9 

(26) 

(27) 

4.  PROOF OF THE MAIN RESULT 

First of all, we notice that, since S is a linear operator, (3) also implies 

f . ( S x )  = - S f . ( x )  (28) 

which enforces in particular for the constant term fo(x) - f o  that Sfo = - fo ;  
we will assume that actually 

fo(x) -= 0 (29) 
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so that the r.h.s, decomposition of (12) applies. Moreover, for n = 1 we get 

A S  = - S A  (30) 

We can now proceed to prove the main theorem; we divide the proof into 
a few steps, and assume (2) and (3) are satisfied. 

L e m m a  III. If A satisfies (30), then Lea exchanges r and ~ , ,  i.e., 
Lea : cg, __, ~ ,  and ~ ,  -~ cgs. 

Proof. This follows by direct computation using Lemma II. Indeed, let 
us write explicitly 

( LeAh)(x) = g(x) = [(Vh(x)]A~, - Ah(x)  (31) 

Now, consider 

g(Sx)  = [ (Vh) (Sx) lASx  - Ah(Sx )  (32) 

which for h(Sx)  = +_ Sh(x)  gives, due to Lemma II and to (30), 

g(Sx) = +_ S[(Vh)(x)]S-I ASx  -y- ASh(x) 

= -T-[(Vh)(x)]Ax +_ SAh(x)  = -T-Sg(x) (33) 

and the lemma is proved. �9 

Corollary. If Le,~he~,, then h = h o + f h ,  with hoeCg s and 
6h e Ker(LeA). 

Corollary. If g e[~sc~Ran(LeA)], then LeAh = g  admits a solution 
h ~ , .  

It should be stressed that Le A controls the transformation of the term 
fk of the same order as the function hk generating the transformation (9), 
but not the transformation induced in higher-order terms. In particular, it 
could happen a priori that the action of (9) with hk e ~,  transforms a 
reversible VF into a nonreversible one. This eventuality is excluded by the 
following result. 

L e m m a  IV.  I f f e  ~ and h ~ ~ ,  then f is transformed by (9) into a 
new reversible VF )7'e ~ .  

Proof. The explicit expression o f T  is given in (11); by this we can 
check that indeed, using Lemma II and h ecgs, 

.ff(Sx) =- [1 + (Vh)(Sx)] - l f ( S x  + h(Sx))  

= [S IS -1  + S .  ( V h ) ( S x ) .  S -  1] - l f ( S x  + Sh(x))  

= --S"  [I + (Vh)(Sx)]-1. S - I S f ( x  + h(x)) 

=- -ST(x)  

and the lemma is proved. �9 
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It should be stressed that in this section neither the condition (2) nor 
Assumption A has been used up to now; we use them in the following 
result. 

Lemma V. Let $ 2 =  I and let A satisfy Assumption A; let 0 be as in 
(17). Then i f f ~ , ,  also Ofe~l , .  

Proof. Since, by assumption, (2) and (19) are verified, we are granted 
that Lemma I and the decomposition (20) hold. We can therefore decom- 
pose any function f ~ J / a s  

f ( x )  = ~b+ (x) + q~_ (x) + ~k+ (x) + ~b_ (x) (34) 

where ~b • E Ker(La A), @_+ e Ran(~A), and 

z+_ (Sx) = + Sz(x) ,  z = 4,, ~ (35) 

Since f ~ ~ , ,  we must have 

~b+ (x) = -~k+ (x) (36) 

and since they belong to complementary (due to Assumption A) linear 
spaces, necessarily 

which enforces in particular 

and proves the lemma. �9 

~b+ = ~b+ = 0 (37) 

O(f )  = @_ ~ ~ (38) 

This also concludes the proof of the ingredients we need for the main 
result, which we state as follows. 

Theorem. Let S 2 = I and f ~  ~ ;  let A = (Df)(O) satisfy Assumption 
A, i.e., [A, A +] = 0. Then the canonical reduction o f f  to NF is reversible 
w.r.t, the same S as f, i.e., w = 7r(f) e ~ .  

Corollary. n(~s)  =- ~',  = ~ = ~' c~ ~ .  

Proof. It is clear that, by Lemma IV, if the NF transformation is 
operated by a sequel of coordinate transformations (9) with all generators 
hk e cg~, then 7r: ~s ~Yr The hk are determined as solutions to the 
homological equation (18); by Lemma III, if the r.h.s, of this is in ~ and 
(30) holds, it is indeed possible to choose hk ~ cgs, and this corresponds to 
the canonical choice. The fact that (30) holds is guaranteed b y f e  ~ (see 
above), and 0(fk) ~ ~.~ follows from Lemma V. The proof of the theorem 
is complete. The proof of the corollary is immediate, since the theorem 
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shows that 

rt(~,) ---#~ _ c # n ~  s = ~ s  (39) 

On the other hand, as observed in Section 1, since n is the identity on ~ ,  
so that n ( # n ~ , )  = ~ n ~ , ,  necessarily # ,  __.t~$, so that ~ = ~ .  �9 

It should be stressed that our proof also permits one to identify the 
RDS which correspond to a given reversible NF: indeed, from the proof it 
is clear that we have the following. 

Corollary. Given a NF VF w(x) ~ ~ ,  the most general RDS f such 
that 7 r ( f )=  w can be obtained by unfolding the NF w by means of 
coordinate transformations of the type (9) with hk ~ cg,. 

5. EXAMPLE 

We would like to illustrate briefly by a concrete example the applica- 
tions of our result. We will fix A and S, given by 

~ 

Notice that A = A + and ~ -  = ~ ,  i.e., Assumption A is verified. 
We will write 

f(x, y )  = 

By straightforward algebra, we get that 

~ f+(x, y) = E O~l,m X l y m  
J,m (42) 

f ~ ~l~ ~--~ -(x, y) ~, " ' 
f - -  O~l,mX Y 

l, rn 

f f+ (x, y) = ~ tim (xy)mx 
f ~  Ker(.~A) ~ [ y - ( x ,  y) • ~ Ym(Xy)my (43) 

m 

If  we want to study all the DS which are reversible w.r.t. S and whose 
linear part is given by A, we should in principle study a generic DS given 
by (42) with the only constraint ~1.o = 1, ~o,~ = 0. 

The theory of NF  tells us that given any system f with linear part A, 
we can reduce the problem to that of studying a system given by 
w = t i f f )  e Ker(LPA), i.e., a system of the form (43) with flo = -Yo = 1. 
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The theorem proved above ensures that we can consider only re- 
versible NF, i.e., we only have to s t u d y f e  (~s c~Ker(~A)); in the present 
case [cf. (42), (43)] we have 

~ f +  (x, y) = ~ flm(Xy)mx 

<--~ (44) 
fe (~sc~Ker(~aa) )  ~ f - ( x , y )  ~-flm(xy)mym 

m 

It is clear that this represents a great simplification with respect to either 
(42) and (43). 

To illustrate this in a completely explicit case, consider A, S as in (40), 
and say we are interested only in DS up to cubic terms. From (42) we have 
that the general form of  such a system is 

Yc = x + c l x  2 + c2xy + c3y 3 + C4 X3 "~ CsX2y + c6xy 2 + c7y 3 

p = - - Y  __ C3X2 __ c 2 x y  __ C l y  2 - -  C7X3 __ C6X2y  _ c s x y  2 __ c 4 y  3 (45) 

while with our theorem it suffices to consider 

.~ = x + ax2y 

f = --Y _ axy  2 (46) 

It is also easy to check explicitly that the transformation (9) taking (45) 
into (46) is generated by h 2, h3 r c#~. Indeed we have explicitly 

h2 = -(h f-~ = ( c l x  2 -  r - (1/3)c3y2"~ (47) 
\ h { /  ~ , c l y  2 - c 2 x y  - ( 1 / 3 ) c 3 x 2 ]  

h 3 = ( h + ~  1 ( c 4 x 3 - c 6 x y 2 - ( 1 / 2 ) c T y 3 ~  

kh;j = ~ \ e , y  3 _ c6x2y _ ( 1 / 2 ) c 7 x 3  ] (48) 

6. DISCUSSION AND CONCLUSIONS 

In order to obtain our results, we have introduced two restrictive 
assumptions, i.e., Assumption A on one hand, and M = R" on the other. 
We would now like to discuss briefly how our discussion is affected if these 
assumptions are relaxed. 

Assumption A, i.e., (19), was used in Lemma V, where we employed 
the decomposition (20) for J / .  I f  (19) fails, we can still decompose ,r162 in 
terms of  Ran(LaA) and Ker(L#~-). We should consider q~+ e Ker(~e + ); (34) 
and (36) would still hold, and the latter would again imply (37) and 
therefore (38). 

The reason to consider Assumption A is that the reduction to NF  is 
slightly more complicated if Assumption A is not satisfied; it would still be 
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possible to go along with the lines of  the present discussion and obtain the 
same final result. The reduction to NF  when Assumption A does not hold 
is discussed in Arnold (1982), Arnold and II'yashenko (1988), and Bruno 
(1989) in the general case and in Belitsky (1979) and Elphick et al. (1987) 
for the symmetric case (39); see below. 

As for the assumption M = R m, if we consider instead a generic 
smooth manifold embedded in R m, M c R", then the very definition (3) of 
RDS we used here is not adequate: indeed, i f f (x )  6 TxM, f (Sx )  ~ TsxM, 
and we should make use of a connection on TM in order to express the 
relation between tangent VF at different points of M. For curved mani- 
folds, the value of the transported VF would depend on the path used to 
go from x to Sx, so that (3) would not make sense in general. It would still 
make sense if we assume that Xo is a fixed point both for S and for the VF 
f,  as we have assumed in our discussion (obviously we can take any point 
x o ~ M  as x =0) .  

More precisely, in general we should revert to local definitions of 
reversibility (Quispd and Capel, 1989); in this case, we would require that 
there are a point Xo which is a fixed point for S, i.e., Sxo = Xo, and a disk 

around x0 (in the matrix on M) invariant under S. I f  M is #-dimen- 
sional, we can then project the disk ~ on the tangent hyperplane to M in 
xo, i.e., to a space R ~', provided the radius of ~ is small enough. We are 
then in the setting of our discussion, with the role of ~ taken by ~ and 
that of m taken by #. Our discussion and results therefore apply to a local 
NF classification of RDS in the neighborhood of a common fixed point of 
S and f.  These considerations do also extend to the case of maps, as 
mentioned in Section 1. 

Summarizing, we have proved that the (canonical) Poincar6-Dulac 
NF  reduction of a DS reversible w.r.t, a given linear involution S is still 
reversible w.r.t, the same S. 

Our theorem allows us to reduce the local study of RDS to that of 
reversible NF, in the same way as one can reduce the local study of DS to 
that of NF. 

It should be mentioned that the result obtained here is the equivalent 
of the known one for DS which are symmetric under a linear transforma- 
tion, i.e., such that 

f (Sx)  = Sf(x) (49) 

holds, rather than (3). In this case, indeed, we are granted that the NF 
w = lr(f)  satisfies as well w(Sx)= Sw(x) (Arnold and II'yashenko, 1988; 
Belitsky, 1979; Elphick et al., 1987). This result cannot be directly applied 
to reversible systems, as the latter invariant under the transformation (4), 
which acts not only on the x, but on the time t as well. 
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In the case (39) the equivariant NF theory has been recently general- 
ized to consider nonlinear transformations S (Cicogna and Gaeta, 1993); 
we conjecture that the parallel between the reversible and the equivariant 
cases extends to this setting. Notice, however, that if the linear part of S is 
nonresonant, it is possible by the Poincarr-Dulac procedure to linearize S 
and deal with the case of linear symmetries considered in the present work. 
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